Fatigue strength of single-sided fillet welds in overlapping ultra-high-strength steel sheets

Author:

Ahola AnttiORCID,Salerto Samu,Loisa Timo,Lipiäinen Kalle,Björk Timo

Abstract

AbstractFrom the manufacturing viewpoint, overlapping thin sheets can provide a substantial geometrical improvement in welded hollow sections compared to butt-welded cross-sectional details. However, the plate eccentricity and non-penetrating fillet welds make the joints susceptible to fatigue failures under transversal cyclic loads. This work experimentally investigates the fatigue strength of overlap joints prepared with gas metal arc welding in the single-sided fillet weld configuration. Fatigue tests were carried out on the lap joints made of S960 ultra-high-strength steel (UHSS) grade under uniaxial constant amplitude axial loading employing both pulsating tension (applied stress ratio of R ≈ 0) and pulsating compression (R ≈ -∞). In addition, the lap joints were prepared with both straight welds (the welds transverse to the loading direction) and inclined welds (the welds with a 30° inclement angle from the transversal direction) to investigate the shear stress effects on the joints’ fatigue performance. Plasma butt-welded samples were tested as a reference join type. For the plasma butt-welded joints, the recommended detail category of FAT71 in the nominal stress system for weld root failures in single-sided butt welds was observed clearly conservative—a mean fatigue strength of Δσc,50% = 130 MPa with a fixed slope parameter of m = 3 was obtained. Compared to the butt-welded joints, a significant decrease in fatigue strength capacity was found in the lap joint specimens with misalignment factors of km > 3.0. The failure locations were also different in joints subjected to the tension and compression loads. The shear load did not majorly contribute to the changes in the fatigue strength capacity compared to the joints subjected to the transversal normal stress.

Funder

Business Finland

LUT University (previously Lappeenranta University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3