Author:
Kromm A.,Lausch T.,Schroepfer D.,Rhode M.,Kannengiesser T.
Abstract
AbstractThe avoidance of failures during the fabrication or operation of petrochemical reactors made of creep-resistant, low-alloy steels as 13CrMoV9-10 requires still research despite over 60 years of international investigations in the field of stress relief cracking. The quality of modern base materials and filler metals leads to the fact that previously known crack causes, such as impurities of S or P, recede into the background. Rather, the causes are increasingly to be found in the fabrication process. Investigations on the influence of heat control on the stresses in welded components and thus on the stress relief cracking sensitivity under realistic manufacturing conditions are not yet available. This work is subdivided in two parts. Part 1 of this study focused on the effect of heat control during submerged arc welding on the stresses. For this purpose, a testing facility was applied, which allows to observe the forces and moments accumulating during welding or heat treatment in a component-like specimen under shrinkage restraint. The stress acting in the specimen increases with higher preheat/interpass temperatures and higher heat input. During the heat treatment, the stresses are relieved. Nevertheless, cracks are formed already during heating. The total crack length correlates with the heat input.
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanical Engineering,Mechanics of Materials