Microstructural evolution and liquation cracking in the partially melted zone of deposited ERNiCrFe-13 filler metal subjected to TIG refusion

Author:

Guo X.,He P.,Xu K.,Chen P. Y.,Chen B.,Huo S. B.

Abstract

AbstractThe microstructure of ERNiCrFe-13 multipass weld metal has been shown to contain Laves/γ or σ/γ eutectic constituents that can increase susceptibility to solidification and weld metal liquation cracking resulting from the low eutectic reaction temperature. Under poor heat dissipation conditions such as on the edge of large thickness welded components, a partially melted zone (PMZ) may form in the weld metal during multipass welding. The microstructural evolution and liquation cracking susceptibility of this PMZ in ERNiCrFe-13 multipass welds have received little attention. In the present study, a tungsten inert gas (TIG) refusion process is used to simulate a thermal cycle with a long elevated temperature dwell time in order to investigate the microstructural evolution and liquation cracking in the weld metal PMZ. The results show that the eutectic microstructures in the PMZ evolve into three eutectic morphologies after TIG refusion, including long linear chains extending perpendicular to the boundary between the refusion zone and PMZ, skeletal structures, and fine lamellar networks. This evolution contributes to constitutional liquation occurring at the γ/Laves and γ/σ interface. Nb and Mo play a leading role in the constitutional liquation of γ/Laves and γ/σ eutectic microstructures, respectively. Liquation cracking in the PMZ is shown to occur along the linear chain grain boundaries resulting from constitutional liquation.

Funder

National Major Science and Technology Projects of China

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3