Author:
Guo X.,He P.,Xu K.,Chen P. Y.,Chen B.,Huo S. B.
Abstract
AbstractThe microstructure of ERNiCrFe-13 multipass weld metal has been shown to contain Laves/γ or σ/γ eutectic constituents that can increase susceptibility to solidification and weld metal liquation cracking resulting from the low eutectic reaction temperature. Under poor heat dissipation conditions such as on the edge of large thickness welded components, a partially melted zone (PMZ) may form in the weld metal during multipass welding. The microstructural evolution and liquation cracking susceptibility of this PMZ in ERNiCrFe-13 multipass welds have received little attention. In the present study, a tungsten inert gas (TIG) refusion process is used to simulate a thermal cycle with a long elevated temperature dwell time in order to investigate the microstructural evolution and liquation cracking in the weld metal PMZ. The results show that the eutectic microstructures in the PMZ evolve into three eutectic morphologies after TIG refusion, including long linear chains extending perpendicular to the boundary between the refusion zone and PMZ, skeletal structures, and fine lamellar networks. This evolution contributes to constitutional liquation occurring at the γ/Laves and γ/σ interface. Nb and Mo play a leading role in the constitutional liquation of γ/Laves and γ/σ eutectic microstructures, respectively. Liquation cracking in the PMZ is shown to occur along the linear chain grain boundaries resulting from constitutional liquation.
Funder
National Major Science and Technology Projects of China
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献