Flow and hardening behavior in the heat-affected zone of welded ultra-high strength steels

Author:

Afkhami Shahriar,Amraei MohsenORCID,Javaheri Vahid,Ghafouri Mehran,Björk Timo,Salminen Antti,Zhao Xiao-Lin

Abstract

AbstractThe applications of thermomechanically processed ultra-high strength steels (UHSS) are rapidly increasing, and welding these UHSSs seems inevitable in steel structures. However, welding heat causes unwanted microstructural transformations in the heat-affected zone (HAZ). Due to the localized nature of these changes throughout the HAZ, evaluating the true stress–strain values of these localized HAZ subzones is essential to improve the accuracy of analytical or numerical models. Hence, this study utilized experimental thermal simulations to replicate HAZ subzones of two types of UHSSs, i.e., direct-quenched S960 and quenched-and-tempered S1100, and employed tensile test in conjunction with digital image correlation to plot the true stress–strain and hardening curves of the subzones. Both UHSSs manifested similar trends but with various fluctuations in their hardening capacities throughout their HAZ subzones. Next, hardening parameters from Hollomon, Voce, and Kocks-Mecking approaches were extracted by fitting the experimental results with the semi-empirical equations. For both UHSS types, the Voce approach, on average, was more accurate in modeling the plastic deformation. Also, hardening parameters achieved via the Voce approach’s fittings agreed with the parameters from Kocks-Mecking plots; this consistency pointed to the predictability of the plastic flow and hardening behavior of both UHSS types. According to the microstructural investigations, the hardening behavior of the investigated HAZ subzones depended on two types of microstructure constituents: ferritic and lath-like features. Ferritic features dominantly governed the plastic flow and hardening near the fusion line, while by getting distant from the fusion line, the lath-like features became more dominant.

Funder

University of Turku

Publisher

Springer Science and Business Media LLC

Reference46 articles.

1. Keeler S, Kimchi M, Mooney PJ (2017) Advanced high-strength steels application guidelines. World Auto Steel. [Accessed 26.12.2023] via: https://www.worldautosteel.org/

2. Keränen L, Kangaspuoskari M, Niskanen J (2021) Ultrahigh-strength steels at elevated temperatures. J Constr Steel Res 183:106739. https://doi.org/10.1016/J.JCSR.2021.106739

3. Shome M, Tumuluru M (2015) Introduction to welding and joining of advanced high-strength steels (AHSS). Welding and joining of advanced high strength steels (AHSS). Elsevier, pp 1–8

4. Amraei M, Ahola A, Afkhami S et al (2019) Effects of heat input on the mechanical properties of butt-welded high and ultra-high strength steels. Eng Struct 198:109460. https://doi.org/10.1016/j.engstruct.2019.109460

5. Porter DA (2015) Weldable high-strength steels : challenges and engineering applications. In: Proceedings of the IIW International conference high-strength materials-challenges and applications. Helsinki, Finland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3