Exploring the boundaries of refill friction stir spot welding: influence of short welding times on joint performance

Author:

Draper JonathanORCID,Fritsche Sebastian,Garrick Andrew,Amancio-Filho Sergio T.,Toumpis Athanasios,Galloway Alexander

Abstract

AbstractRefill friction stir spot welding is a solid-state spot-welding technique suited to lap joining of thin aluminium sheets, including difficult-to-weld 2xxx series alloys that are prone to hot cracking during fusion welding processes. Long welding time is an ongoing challenge that hinders industrial adoption of the process. To address this, the present study explores much shorter welding times than those previously reported in the literature and assesses the impact on joint quality. Joints of 1.8 mm thick AA2024-T3 sheet were produced with welding times from 3 s, down to 0.75 s and rotational speeds of 1000 rpm to 2500 rpm. Defect formations within the welds were studied with the aid of optical microscopy. The mechanical properties were evaluated using tensile lap shear testing and microhardness mapping, and failure modes were characterised using scanning electron microscopy. Various weld defects were found at all welding times and rotational speeds, and the defects enlarged with decreasing welding time and increasing RS. The highest lap shear strength of 9.21 kN was achieved with a welding time of 3 s and rotational speed of 2000 rpm; lap shear strengths of 7.02 kN and 6.37 kN were achieved for 1.5 s and 0.75 s welds, respectively.

Funder

The Scottish Association for Metals

TAKEOFF

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3