Parametric study of melt pool geometry in hybrid plasma arc-laser melting process for additive manufacturing application

Author:

Wang Chong,Suder Wojciech,Ding Jialuo,Williams Stewart

Abstract

AbstractWire-based hybrid arc-laser additive manufacturing is suitable for producing large metallic parts (metres in scale) with high deposition rates and near-net-shape. In this process, the surface quality and dimensional accuracy of the deposited parts are determined by the melt pool geometry. However, how to control the melt pool in the hybrid process is complex due to the multiple parameters that can be used. In this study, control of melt pool geometry by investigating different process parameters, including laser power, travel direction, arc-laser separation distance, laser beam size, and arc current in the hybrid plasma transferred arc (PTA)-laser process, was studied systematically. It was found that a larger melt pool was achieved with the PTA-leading configuration compared to that with the laser-leading configuration due to a higher laser absorption occurred with the former configuration. The melt pool was enlarged by either increasing the laser power or arc current due to the increased energy input. However, if the laser power density is high enough to determine the melt pool depth, the increasing arc current has very little effect on melt pool depth but only increases the melt pool width. In addition, the melt pool became shallower and wider when using a larger laser beam. The arc-laser separation distance had a minor effect on the melt pool geometry due to the fixed energy input used in the studied cases. The results of this study provide a reference for melt pool control in wire-based hybrid arc-laser additive manufacturing.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3