Robustness investigation of an in-situ absorption measurement system for laser processing

Author:

Wittemer MoritzORCID,Wudy KatrinORCID

Abstract

AbstractThe laser-material interaction Katrin Wudy for laser-material processes, such as laser welding, where several phase changes occur, still needs to be fully understood. The high energy input in the material in a short time and small space renders the laser-material interaction a complex and highly dynamic mechanism. This interaction and the resulting radiation absorption govern the process behavior during manufacturing and, in turn, the quality of parts. In situ monitoring of the laser radiation absorption can be facilitated to evaluate the process. The absorption can be determined using an integrating sphere. To employ such a measuring system reliably without intense calibration effort for high throughput experiments, the robustness of the measuring signal toward changes to the system is crucial. This work evaluates said robustness by a series of experiments for which the signal of the integrating sphere diode and the back-reflection sensor of the laser are considered. The measuring system was altered by varying the electronic gain and the distance between the sphere and the specimen. Multiple experiments with varying laser powers were conducted for every configuration of the measuring system. Additionally, the stability of the reflective properties of the coated inner sphere was evaluated by analyzing the change in the measurements over time. The experimental results show the robustness of the integrating sphere signal trend toward the changes in the measurement parameters and degradation of the inner sphere coating. These are properties of a robust measuring system, which has excellent use in high throughput experiments for fundamental research in laser-material interaction.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3