Comparison of fatigue test results of high-strength steel DED-Arc specimens with milled and unmilled surfaces

Author:

Müller JohannaORCID,Dastgerdi Jairan Nafar,Hensel JonasORCID

Abstract

Abstract The surface characteristics of direct energy deposition (DED)-Arc specimens have been previously explored, revealing the dual effect of the surface topography on fatigue strength. This effect includes a reduction in the nominal load-bearing cross-section due to the waviness of the surface and the initiation of fatigue cracks at combined geometric and metallurgical notches from the surface. To complement these findings, this study focuses on the fatigue life and crack initiation of milled DED-Arc samples, e.g., after removal of the geometric notches. Fatigue tests on DED-Arc specimens validate the impact of surface topography on fatigue strength, emphasizing the significance of surface characteristics in determining structural integrity. The additional tests conducted on milled surfaces provide insights into the failure mechanisms specific to these samples. Fracture surface analysis, microstructure characterization, and hardness measurements are performed. For both surface conditions, cracks originate in the interlayer zone, where local hardness is reduced. In unmilled specimens, this is due to the stress concentration effect, and in milled samples, this is due to softened interlayer zones. The fatigue life of milled specimens is comparatively high, demonstrating the importance of optimizing surface characteristics for improved fatigue resistance. Highlights 1. Both, unmilled and milled specimens, show crack origins in the interlayer areas. For unmilled specimens, this is because of the local stress concentration in the notch; for milled specimens, it was shown that soft zones between the layers act as the weakest link. 2. The fatigue strength of unmilled test coupons is significantly lower than those of milled specimens. 3. Unmilled samples exhibit multiple crack origins.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3