Determination of fiber saturation point of rattan (Calamus simplicifolius) using the LF-NMR and two conventional methods

Author:

Yang Limei,Tian Genlin,Yang Shumin,Shang Lili,Liu Xing’e,Jiang Zehui

Abstract

AbstractWater exists in lignocellulosic materials throughout the whole process from the plant growth to raw materials processing and utilization. The fiber saturation point (FSP) is the inflection point of the physical and mechanical properties of lignocellulosic materials and has an important influence on their physical and mechanical properties. This paper investigates the FSP of Calamus simplicifolius by the low-field nuclear magnetic resonance (LF-NMR) method and two conventional methods including the saturated salt solution method and dynamic vapor sorption (DVS) method. The average FSP values determined by the LF-NMR method, the saturated salt solution method and the DVS method are 38.15%, 32.54% and 28.96%, respectively. The study showed that the FSP values determined by the LF-NMR method were higher than those determined by the two conventional methods. The two conventional methods are simple and cost-effective and are able to directly measure whether the rattan properties are changing with moisture content. From the thermodynamics standpoint, even within the ideal solution limit, free water is present at relative humidity (RH) of less than 100%. Therefore, extrapolation to 100% RH was not strictly correct. The amount of water in rattan in different states could be quantified by the LF-NMR method, and the FSP value was determined by the ratio of the measurements above and below the water melting point. Furthermore, the LF-NMR method is faster and non-destructive compared to the two conventional methods.

Funder

National Science and Technology Support Plan

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Plant Science,General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3