Wood fibre alkalization effect on the thermal stability of meranti wood flour: a modification of the conventional method

Author:

Mabuto B.ORCID,Hlangothi S. P.

Abstract

AbstractAlkalization of plant or wood fibre (WF) is the most widely used method of chemical modification to improve reinforcement in thermoplastic composites. This process involves the complete or partial removal of extractives and or modification of lignocellulosic material. While research has shown that removal of the less thermally stable extractives results in an improvement in fibre thermal stability, in the current work it has been shown through single-factor analyses, Fourier transform infrared microscopy, scanning electron microscopy, thermogravimetric analyses and wide angle X-ray diffraction that meranti WF thermal stability is largely influenced by the holistic changes in the WF structure, which itself is affected by alkalization factors. After implementing stepwise regression on a central composite design, no empirical model could be established to explain or predict thermal stability due to interaction of treatment factors. As a result, single-factor analyses of temperature, time and alkali concentration were conducted. Single-factor analyses showed that different combinations of time, temperature and alkali concentration through a central composite design result in WF with different thermal stabilities, lignocellulosic content, crystallinities, crystallite sizes, extractives content and morphology. Alkali-treated meranti WF showed lower thermal stability compared to the untreated WF. Mild treatment conditions (e.g. 50 °C/30 min/5%) were seen to result in the most thermally stable WF. Increasing temperature, treatment duration and alkali concentration increased thermal stabilities except at harsh conditions (e.g. 50 °C/90 min/15%). A combination of high alkali concentration and long treatment times showed a combined detrimental effect on WF thermal stability. Changes in the lignocellulosic structure, crystallinity, crystallite sizes and surface features explain the observed changes in thermal stabilities.

Funder

Council for Scientific and Industrial Research, South Africa

Nelson Mandela University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3