Comparative studies on the durability and moisture performance of wood modified with cyclic N-methylol and N-methyl compounds

Author:

Emmerich LukasORCID,Ehrmann Alexander,Brischke Christian,Militz Holger

Abstract

AbstractGlyoxal-based condensation resins like 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) have been used to modify wood and improve its resistance against decaying fungi. High biological durability of DMDHEU-treated wood has already been confirmed in laboratory and field tests in the past. However, the modes of protective action behind an improved decay resistance are not fully understood yet. Furthermore, it is questionable how the use of formaldehyde-poor N-methylol and formaldehyde-free N-methyl compounds instead of DMDHEU affects the moisture behavior and durability, respectively. In this study, wood blocks were treated with N-methylol (DMDHEU, methylated DMDHEU) and N-methyl compounds (1,3-dimethyl-4,5-dihydroxyethyleneurea; DMeDHEU). Untreated and modified specimens were exposed to different moisture regimes and wood-destroying fungi in order to study the indicators that control changes in the wetting ability and decay resistance. Both N-methylol and N-methyl compounds decreased the water uptake and release and increased the durability of Scots pine sapwood from ‘not durable’ (DC 5) to ‘very durable to durable’ (DC 1–2). However, high fluctuations were observed in water uptake and release as well as mass loss (ML) caused by fungal decay, when modified specimens were tested without passing through a cold-water leaching. Consequently, a significant effect of the leaching procedure according to EN 84 on the durability classification could be established. The latter appeared more pronounced for treatments with N-methyl compounds compared to N-methylol compounds. Finally, wetting ability (kwa) and resistance indicating factors (kinh) enabled a forecast of high biological durability for both treatments with N-methylol and N-methyl compounds under real service life conditions.

Funder

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Plant Science,General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3