Abstract
Abstract
A novel formulation for the description of spatial rigid body motion using six non-redundant, homogeneous local velocity coordinates is presented. In contrast to common practice, the formulation proposed here does not distinguish between a translational and rotational motion in the sense that only translational velocity coordinates are used to describe the spatial motion of a rigid body. We obtain these new velocity coordinates by using the body-fixed translational velocity vectors of six properly selected points on the rigid body. These vectors are projected into six local directions and thus give six scalar velocities. Importantly, the equations of motion are derived without the aid of the rotation matrix or the angular velocity vector. The position coordinates and orientation of the body are obtained using the exponential map on the special Euclidean group $\mathit{SE}(3)$SE(3). Furthermore, we introduce the appropriate inverse tangent operator on $\mathit{SE}(3)$SE(3) in order to be able to solve the incremental motion vector differential equation. In addition, we present a modified version of a recently introduced a fourth-order Runge–Kutta Lie-group time integration scheme such that it can be used directly in our formulation. To demonstrate the applicability of our approach, we simulate the unstable rotation of a rigid body.
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation
Reference36 articles.
1. Amirouche, F.M.L.: Fundamentals of Multibody Dynamics. Birkhäuser, Boston (2006)
2. Andreas, M.: Coordinate mappings for rigid body motions. J. Comput. Nonlinear Dyn. 12(2), 10 (2017)
3. Arnold, M., Cardona, A., Brüls, O.: A Lie algebra approach to Lie group time integration of constrained systems. In: Betsch, P. (ed.) Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, pp. 91–158. Springer, Berlin (2016)
4. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Berlin (2011)
5. Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 1–13 (2010)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献