The equations of motion for a rigid body using non-redundant unified local velocity coordinates

Author:

Holzinger StefanORCID,Schöberl Joachim,Gerstmayr Johannes

Abstract

Abstract A novel formulation for the description of spatial rigid body motion using six non-redundant, homogeneous local velocity coordinates is presented. In contrast to common practice, the formulation proposed here does not distinguish between a translational and rotational motion in the sense that only translational velocity coordinates are used to describe the spatial motion of a rigid body. We obtain these new velocity coordinates by using the body-fixed translational velocity vectors of six properly selected points on the rigid body. These vectors are projected into six local directions and thus give six scalar velocities. Importantly, the equations of motion are derived without the aid of the rotation matrix or the angular velocity vector. The position coordinates and orientation of the body are obtained using the exponential map on the special Euclidean group $\mathit{SE}(3)$SE(3). Furthermore, we introduce the appropriate inverse tangent operator on $\mathit{SE}(3)$SE(3) in order to be able to solve the incremental motion vector differential equation. In addition, we present a modified version of a recently introduced a fourth-order Runge–Kutta Lie-group time integration scheme such that it can be used directly in our formulation. To demonstrate the applicability of our approach, we simulate the unstable rotation of a rigid body.

Funder

FFG

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Reference36 articles.

1. Amirouche, F.M.L.: Fundamentals of Multibody Dynamics. Birkhäuser, Boston (2006)

2. Andreas, M.: Coordinate mappings for rigid body motions. J. Comput. Nonlinear Dyn. 12(2), 10 (2017)

3. Arnold, M., Cardona, A., Brüls, O.: A Lie algebra approach to Lie group time integration of constrained systems. In: Betsch, P. (ed.) Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, pp. 91–158. Springer, Berlin (2016)

4. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Berlin (2011)

5. Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5(3), 1–13 (2010)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3