Identification of lumped stiffness parameters for a motorcycle model in investigating weave and wobble

Author:

Passigato Francesco,Schramm Alexander,Diermeyer Frank,Sorrentino Silvio,Gordner Achim,De Felice Alessandro

Abstract

AbstractIn motorcycle dynamics, great importance is attributed to the study of the weave and wobble vibration modes and, in particular, to the effects of the flexibility of structural components on their stability. Therefore, appropriate motorcycle models for studying weave and wobble should include flexible elements for describing the flexural behavior of components such as the main frame, front assembly, and rear swingarm. Different approaches are possible for modeling flexibilities: the most common among them are the lumped stiffness and the flexible multibody approaches. While the latter certainly provides higher accuracy, the former has advantages in terms of computational load, but, above all, it makes it easier to understand in the design phase how technical parameters, such as torsional and bending stiffness of a given structural component, can influence the stability of weave and wobble. The accuracy of lumped stiffness models strongly depends on parameter identification. In this study, a general method is proposed to determine appropriate lumped stiffness parameters for any given motorcycle component. The proposed method is tested and validated by comparing the weave and wobble modal behavior with the results of flexible multibody analysis. The lumped stiffness model is then adopted to carry out a sensitivity analysis aimed at identifying the effects on the weave and wobble stability of the torsional and bending stiffness of specific structural components of the motorcycle to optimize their design.

Funder

BMW Group, Germany

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3