State estimator based on an indirect Kalman filter for a hydraulically actuated multibody system

Author:

Jaiswal SurajORCID,Sanjurjo EmilioORCID,Cuadrado JavierORCID,Sopanen JussiORCID,Mikkola AkiORCID

Abstract

AbstractIn multibody system dynamics, the equations of motion are often coupled with systems of other physical nature, such as hydraulics. To infer the real dynamical state of such a coupled multibody system at any instant of time, information fusing techniques, such as state estimators, can be followed. In this procedure, data is combined from the coupled multibody model and the physical sensors installed on the actual machine. This paper proposes a novel state estimator developed by combining a multibody model with an indirect Kalman filter in the framework of hydraulically driven systems. An indirect Kalman filter that utilizes the exact Jacobian matrix of the plant at position and velocity level is extended for hydraulically actuated systems. The structures of the covariance matrices of the plant and measurement noise are also studied. The multibody system, described using a semi-recursive formulation, and the hydraulic subsystem, described using lumped fluid theory, are coupled using a monolithic approach. As a case study, the state estimator is applied to a hydraulically actuated four-bar mechanism. The state estimator considers modeling errors in the force model because of its uncertainty in modeling. The measurements are obtained from a dynamic model which is considered as the ground truth, with an addition of white Gaussian noise to represent the noise properties of the actual sensors. The state estimator uses four sensor configurations with different sampling rates. For the presented case study, the state estimator can accurately estimate the work cycle and hydraulic pressures of the coupled multibody system. The results demonstrate the efficacy of the proposed state estimator.

Funder

Business Finland

Academy of Finland

LUT University (previously Lappeenranta University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3