Variational integrators and graph-based solvers for multibody dynamics in maximal coordinates

Author:

Brüdigam Jan,Sosnowski Stefan,Manchester Zachary,Hirche Sandra

Abstract

AbstractMultibody dynamics simulators are an important tool in many fields, including learning and control in robotics. However, many existing dynamics simulators suffer from inaccuracies when dealing with constrained mechanical systems due to unsuitable integrators with bad energy behavior and problematic constraint violations, for example in contact interactions. Variational integrators are numerical discretization methods that can reduce physical inaccuracies when simulating mechanical systems, and formulating the dynamics in maximal coordinates allows for easy and numerically robust incorporation of constraints such as kinematic loops or contacts. Therefore, this article derives a variational integrator for mechanical systems with equality and inequality constraints in maximal coordinates. Additionally, efficient graph-based sparsity-exploiting algorithms for solving the integrator are provided and implemented as an open-source simulator. The evaluation of the simulator shows improved physical accuracy due to the variational integrator and the advantages of the sparse solvers. Comparisons to minimal-coordinate algorithms show improved numerical robustness, and application examples of a walking robot and an exoskeleton with explicit constraints demonstrate the necessity and capabilities of maximal coordinates.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Reference53 articles.

1. Agarwal, P., Narayanan, M.S., Lee, L.-F., Mendel, F., Krovi, V.N.: Simulation-based design of exoskeletons using musculoskeletal analysis. In: Computers and Information in Engineering Conference, pp. 1357–1364. ASMEDC, Montreal (2010)

2. Kuhn, J., Hu, T., Schappler, M., Haddadin, S.: Dynamics simulation for an upper-limb human-exoskeleton assistance system in a latent-space controlled tool manipulation task. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 158–165. IEEE, Brisbane (2018)

3. Koenemann, J., Del Prete, A., Tassa, Y., Todorov, E., Stasse, O., Bennewitz, M., Mansard, N.: Whole-body model-predictive control applied to the HRP-2 humanoid. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3346–3351. IEEE, Hamburg (2015)

4. Erez, T., Lowrey, K., Tassa, Y., Kumar, V., Kolev, S., Todorov, E.: An integrated system for real-time model predictive control of humanoid robots. In: International Conference on Humanoid Robots (Humanoids), pp. 292–299. IEEE, Atlanta (2013)

5. Andrychowicz, O.M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S., Tobin, J., Welinder, P., Weng, L., Zaremba, W.: Learning dexterous in-hand manipulation. Int. J. Robot. Res. 39(1), 3–20 (2020)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3