Time integration of rigid bodies modelled with three rotation parameters

Author:

Holzinger StefanORCID,Gerstmayr Johannes

Abstract

AbstractThree rotation parameters are commonly used in multibody dynamics or in spacecraft attitude determination to represent large spatial rotations. It is well known, however, that the direct time integration of kinematic equations with three rotation parameters is not possible in singular points. In standard formulations based on three rotation parameters, singular points are avoided, for example, by applying reparametrization strategies during the time integration of the kinematic equations. As an alternative, Euler parameters are commonly used to avoid singular points. State-of-the-art approaches use Lie group methods, specifically integrators, to model large rigid body rotations. However, the former methods are based on additional information, e.g. the rotation matrix, which must be computed in each time step. Thus, the latter method is difficult to incorporate into existing codes that are based on three rotation parameters. In this contribution, a novel approach for solving rotational kinematics in terms of three rotation parameters is presented. The proposed approach is illustrated by the example of the rotation vector and the Euler angles. In the proposed approach, Lie group time integration methods are used to compute consistent updates for the rotation vector or the Euler angles in each time step and therefore singular points can be surmounted and the accuracy is higher as compared to the direct time integration of rotation parameters. The proposed update formulas can be easily integrated into existing codes that use either the rotation vector or Euler angles. The advantages of the proposed approach are demonstrated with two numerical examples.

Funder

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modelling and Simulation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3