Integrated vibration suppression attitude control for flexible spacecrafts with internal liquid sloshing

Author:

Colagrossi AndreaORCID,Lavagna Michèle

Abstract

AbstractVibration suppression during attitude control is a fundamental research topic whenever control of the rotational motion of a spacecraft with flexible appendages and internal liquid sloshing is of interest. The proposed method is based on an attitude control system with centralized sensors and actuators, without the usage of collocated devices for vibration management. In this way, it is possible to develop and implement a computationally efficient real-time control system that is suitable for any kind of spacecraft, even with advanced control capabilities. An integrated vibration suppression attitude control is designed and analyzed, exploiting also a numerical simulation verification procedure based on validated code. The developed attitude control system applies two fundamental control schemes: classical proportional-derivative (PD) control, with nonadaptive band-stop filters, and wave-based control. The proposed wave-based control implementation allows managing three-dimensional attitude dynamics in steady state pointing, without cross-coupling between the separate body axes. To overcome this limitation, the paper presents the integration of the wave-based control with the filtered PD control scheme, allowing us to have a complete three-dimensional real-time MIMO controller, with vibration suppression capabilities and robustness to system uncertainties. The paper also presents the development of an accurate dynamical model of a generic flexible spacecraft with internal liquid sloshing based on a multibody formulation.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3