Abstract
AbstractWe apply the concept of servo constraints to end-effector trajectory tracking control of parallel robots with structural link flexibilities. Such servo constraints deliver the inverse robot model where solution approaches via projections are proposed, which transform the resulting differential-algebraic equations to ordinary differential equations. The applicable solution process depends on the existence and stability of the internal dynamics. When using the exact end-effector of flexible link robots as output, this internal dynamics is usually unstable. Then a two-point boundary value problem is considered in the framework of stable inversion to obtain the noncausal solution offline. This solution is used as a feedforward control, which is initially combined only with actuator feedback control. To also account for errors within the link flexibility, the well-known linear–quadratic regulator is adapted to end-effector trajectory tracking based on differential-algebraic equations. Finally, we propose a systematic input–output feedback linearization approach, which uses servo constraints for flexible link parallel robots. Here a minimum phase system is obtained by tracking a redefined end-effector output, which is an approximation of the exact end-effector position. All control concepts are validated experimentally with a parallel robot having a highly flexible link. The results allow us to compare different control approaches and show the superior performance of controllers that rely on a flexible multibody model in contrast to classical rigid multibody modeling.
Funder
deutsche forschungsgemeinschaft
Technische Universität Hamburg
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献