Abstract
AbstractThis paper describes the quasi-static formulation of frictionless line contact between flexible beams by employing the mortar finite element approach. Contact constraints are enforced in a weak sense along the contact region using Lagrange multipliers. A simple projection appropriate for thin beams with circular cross-sections is proposed for the computation of contact regions. It is combined with the geometrically exact beam formalism on the Lie group $SE(3)$
S
E
(
3
)
. Interestingly, this framework leads to a constraint gradient and a tangent stiffness invariant under rigid body transformations. The formulation is tested in some numerical examples.
Funder
Fraunhofer Institute for Industrial Mathematics (ITWM)
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation
Reference51 articles.
1. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the Special Euclidean group $SE(3)$. Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014)
2. Sonneville, V.: A geometric local frame approach for flexible multibody systems. PhD Thesis, University of Liège (2015)
3. Sonneville, V., Cardona, A., Brüls, O.: Geometric interpretation of a non-linear finite element on the Lie group $SE(3)$. Arch. Mech. Eng. 61, 305–329 (2014)
4. Borri, M., Botasso, C.: An intrinsic beam model based on a helicoidal approximation. Int. J. Numer. Methods Eng. 37, 2267–2289 (1994)
5. Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–313 (1859)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献