Generation of realistic saddle trajectories from captured horseback motion

Author:

Ziegler JakobORCID,Gattringer Hubert,Müller Andreas

Abstract

AbstractHippotherapy, riding a horse in the context of rehabilitation, is a medical treatment that successfully has been employed in various fields, e.g. for improving locomotion performance of patients with movement disorders. Robotic systems enable the application of hippotherapy in clinical environments with additional benefits, like adjustable speed and high repeatability. Fundamental for a therapy outcome equivalent to classical hippotherapy is that the trajectory of the robotic system is as realistic as possible. This paper introduces a method for the synthesis of horseback motions using motion capture data of various horse gaits. Based on complete gait cycles, an analytical, time-continuous and periodic motion description is constructed. Measured 3D marker positions are reconstructed with a mean error not exceeding 8.6 mm. If the motion capture data of several gait cycles are considered, a more generalized trajectory is generated. An adjustable time dilatation parameter enables the adaptation of the generated motion according to the physical abilities of the patient or the capabilities of the robotic system. This method allows for motion synthesis with arbitrary time span and time resolution, generating realistic trajectories effectively applicable to robotic systems for riding simulation in general and robotic hippotherapy in particular.

Funder

Linz Center of Mechatronics

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Modelling and Simulation Based on Kinematic Analysis for Hippotherapy;Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3