LuGre or not LuGre

Author:

Rill G.,Schaeffer T.,Schuderer M.

Abstract

AbstractThe LuGre model is widely used in the analysis and control of systems with friction. Recently, it has even been made available in the commercial multibody dynamics simulation software system Adams. However, the LuGre model exhibits well-known drawbacks like too low and force rate-dependent break-away forces, drift problems during sticking periods, and significant differences in non-stationary situations between the pre-defined friction law and the one produced by the LuGre model. In the present literature, these problems are supposed to come from the model dynamics or its nonlinear nature. However, most of these drawbacks are not simple side effects of a dynamic friction model but are caused in the LuGre approach, as shown here, by a too simple and inconsistent model of the bristle dynamics. Standard examples and a more practical application demonstrate that the LuGre model is not a “what you see is what you get” approach. A dynamic friction model with accurate bristle dynamics and consistent friction force is set up here. It provides insight into the physical basis of the LuGre model dynamics. However, it results in a nonlinear and implicit differential equation, whose solution will not be easy because of the ambiguity of the friction characteristics. The standard workaround, a static model based on simple regularized characteristics, produces reliable and generally satisfactory results but definitely cannot maintain a stick. The paper presents a second-order dynamic friction model, which may serve as an alternative. It can maintain a stick and produces realistic and reliable results.

Funder

Ostbayerische Technische Hochschule Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Science Applications,Mechanical Engineering,Aerospace Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3