Load torque estimation for cable failure detection in cable-driven parallel robots: a machine learning approach

Author:

Bettega Jason,Piva Giulio,Richiedei Dario,Trevisani Alberto

Abstract

AbstractThis paper proposes a method for cable failure detection in cable-driven parallel robots (CDPRs) with arbitrary architecture, which is based on the estimates of the motor load torques, together with machine learning algorithms. By just exploiting the dynamic model of each actuator in the conditions of no load, an open-loop load torque observer is designed for each motor to estimate the presence of a load coupled through a cable. Since such a load instantaneously goes to zero for the motor with a broken cable, a simple but effective and robust signature of failure can be inferred to provide reliable detection even in the case of various model mismatches. Additionally, the load torque observer is not computationally demanding since just motor measurements are required, thus avoiding any direct measurement (and a dynamic model as well) on the end-effector. The detection of a failure is made through supervised classification algorithms based on artificial intelligence. The training of the machine learning algorithm is based on a “hybrid” approach: the dataset includes several failure cases, which are numerically generated through a system digital twin developed through the multibody system theory, together with measurements of the real system in nonfailing conditions. Different classification algorithms are considered, together with different sets of input variables to be fed to the classifier. Four numerical examples are proposed by showing the method capability in handling both fully actuated and redundantly actuated CDPRs under cable failure, both rigid and flexible cables, and also evaluating the response in the presence of cable slackness.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

European Union

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3