1. Ferdousi, R. (2022). Digital twins for well-being: An overview. Digital Twin, 2022, 1–20.
2. Rahul, M. R., & Chiddarwar, S. S. (2023). Integrating virtual twin and deep neural networks for efficient and energy-aware robotic deburring in industry 4.0. International Journal of Precision Engineering and Manufacturing, 24, 1517–1534.
3. Lee, J., Chua, P. C., Chen, L., Ng, P. H., Kim, Y., Wu, Q., Jeon, S., Jung, J., Chang, S., & Moon, S. K. (2023). Key enabling technologies for smart factory in automotive industry: status and applications. Journal of Precision Engineering and Manufacturing-Smart Technology, 1, 93–105.
4. Wang, L., Jones, D., Chapman, G. J., Siddle, H. J., Russell, D. A., Alazmani, A., & Culmer, P. (2020). A review of wearable sensor systems to monitor plantar loading in the assessment of diabetic foot ulcers. IEEE Journal of Transactions on. Biomedical Engineering, 67, 1989–2004.
5. Chen, J.-L., Dai, Y.-N., Grimaldi, N. S., Lin, J.-J., Hu, B.-Y., Wu, Y.-F., & Gao, S. (2021). Plantar pressure-based insole gait monitoring techniques for diseases monitoring and analysis: A review. Advanced Materials Technologies, 7, 2100566.