Predict the Effects of Forming Tool Characteristics on Surface Roughness of Aluminum Foil Components Formed by SPIF Using ANN and SVR

Author:

Najm Sherwan MohammedORCID,Paniti Imre

Abstract

AbstractIn the present work, multiple forming tests were conducted under different forming conditions by Single Point Incremental Forming (SPIF). In which surface roughness, arithmetical mean roughness (Ra) and the ten-point mean roughness (Rz) of AlMn1Mg1 sheet were experimentally measured. Also, an Artificial Neural Network (ANN) was used to predict the (Ra) and (Rz) by adopting the data collected from 108 components that were formed by SPIF. Forming tool characteristics played a key role in all the predictions and their effect on the final product surface roughness. In the aim to explore the proper materials and geometry of forming tools, different ANN structures, different training, and transfer functions have been applied to predict (Ra) and (Rz) as an output argument. Furthermore, Support Vector Regression (SVR) with different kernel types have been used for prediction, together with Gradient Boosting regression to sort the effective parameters on the surface roughness. The input arguments were tool materials, tool shape, tool end/corner radius, and tool surface roughness (Ra and Rz). The actual data subjected to a fit regression model to generate prediction equations of Ra and Rz. The results showed that ANN with one output gives the best R-Square (R2). Levenberg-Marquardt backpropagation (Trainlm) training function recorded the highest value of R2, 0.9628 for prediction Ra using Softmax transfer function whereas 0.9972 for Rz by Log- Sigmoid transfer function. Furthermore, tool materials, together with tool surface (Ra), are playing a significant importance role, affecting the sheet surface roughness (Ra). Whereas tool roughness Rz was the critical parameter effected on the Rz of the product. Also, there was a significant positive effect of tool geometry on the sheet surface roughness.

Funder

Ministry of National Economy of Hungary and Higher Education Excellence Program of the Ministry of Human Capacities

Higher Education Excellence Program of the Ministry of Human Capacities

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3