Author:
He Zhaopeng,Shi Tielin,Xuan Jianping,Jiang Su,Wang Yinfeng
Funder
National Natural Science Foundation of China
Science Challenge Project
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering
Reference40 articles.
1. Rai, J. K., Brand, D., Slama, M., & Xirouchakis, P. (2011). Optimal selection of cutting parameters in multi-tool milling operations using a genetic algorithm. International Journal of Production Research, 49(10), 3045–3068.
2. Yeganefar, A., Niknam, S. A., & Asadi, R. (2019). The use of support vector machine, neural network, and regression analysis to predict and optimize surface roughness and cutting forces in milling. International Journal of Advanced Manufacturing Technology, 105(1–4), 951–965.
3. Imani, L., Henzaki, A. R., Hamzeloo, R., & Davoodi, B. (2020). Modeling and optimizing of cutting force and surface roughness in milling process of Inconel 738 using hybrid ANN and GA. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 234(5), 920–932.
4. Jeyakumar, S., Marimuthu, K., & Ramachandran, T. (2015). Optimization of machining parameters of A16061 composite to minimize the surface roughness—modelling using RSM and ANN. Indian Journal of Engineering and Materials Sciences, 22(1), 29–37.
5. Chang, W. Y., Wu, S. J., & Hsu, J. W. (2020). Investigated iterative convergences of neural network for prediction turning tool wear. International Journal of Advanced Manufacturing Technology, 106(7–8), 2939–2948.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献