Funder
Ministry of Science and ICT, South Korea
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. arXiv preprint arXiv:1901.03407
2. Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K. (2020). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587.
3. Brito, L. C., Susto, G. A., Brito, J. N., & Duarte, M. A. V. (2022). An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery. Mechanical Systems and Signal Processing, 163, 108105.
4. Ogata, J., & Murakawa, M. (2016). Vibration-based anomaly detection using FLAC features for wind turbine condition monitoring. In Proceedings of the 8th European workshop on structural health monitoring, Bilbao, Spain (pp. 5–8).
5. Birgelen, A. V., Buratti, D., Mager, J., & Niggemann, O. (2018). Self-organizing maps for anomaly localization and predictive maintenance in cyber-physical production systems. Procedia CIRP, 72, 480–485.