Spectroscopy from quantum dynamics: a mixed wave function/analytical line shape functions approach

Author:

Montorsi Francesco,Aranda Daniel,Garavelli Marco,Santoro Fabrizio,Segatta Francesco

Abstract

AbstractQuantum dynamics is the natural framework in which accurate simulation of spectroscopy of nonadiabatically coupled molecular systems can be obtained. Even if efficient quantum dynamics approaches have been developed, the number of degrees of freedom that need to be considered in realistic systems is typically too high to explicitly account for all of them. Moreover, in open-quantum systems, a quasi-continuum of low-frequency environment modes need to be included to get a proper description of the spectral bands. Here, we describe an approach to account for a large number of modes, based on their partitioning into two sets: a set of dynamically relevant modes (so-called active modes) that are treated explicitly in quantum dynamics, and a set of modes that are only spectroscopically relevant (so-called spectator modes), treated via analytical line shape functions. Linear and nonlinear spectroscopy for a realistic model system is simulated, providing a clear framework and domain of applicability in which the introduced approach is exact, and assessing the error introduced when such a partitioning is only approximate.

Funder

Generalitat Valenciana/European Social Fund

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3