Theorems and rules connecting bond energy and bond order with electronegativity equalization and hardness maximization

Author:

von Szentpály LászlóORCID

Abstract

AbstractBond orders are attributed a new role in rationalizing the electronegativity equalization (ENE) and maximum hardness (MH) rules. The following rules and theorems are formulated for chemical species (atoms, groups, molecules), X, Y, XY, their ionization energies, I, electron affinities, A, electronegativity, χ = ½(I + A), and chemical hardness, η = ½ (I − A). Rule 1 Sanderson’s principle of electronegativity equalization is supported (individual deviations < 10%) by association reactions, X + Y → XY, if the ionic bond dissociation energies are equal, D (XY+) = D (XY), or, equivalently, if the relative bond orders are equal, BOrel (XY+) = BOrel (XY). Rule 2 Sanderson’s principle of electronegativity equalization is supported (individual deviations < 10%) by association reactions, X + Y → XY, if the formal bond orders, FBO, of the ions are equal, FBO (XY+) = FBO (XY). Theorem 1 The electronegativity is not equalized by association reactions, X + Y → XY, if the formal bond orders of the ions differ, FBO (XY+) − FBO (XY) ≠ 0. Theorem 2 The chemical hardness is increased by nonpolar bond formation, 2X → X2, if (and for atomic X: if and only if) the sum BOrel (X2+) + BOrel (X2) < 2. Rule 3 The chemical hardness is decreased, thus the “maximum hardness principle” violated by association reactions, X + Y → XY, if (but not only if) BOrel (XY+) + BOrel (XY) > 2. The theorems are proved, and the rules corroborated with the help of elementary thermochemical cycles according to the first law of thermodynamics. They place new conditions on the “structural principles” ENE and MH. The performances of different electronegativities and hardness scales are compared with respect to ENE and MH. The scales based on valence-state energies perform consistently better than scales based on ground-state energies. The present work provides the explanation for the order of magnitude better performance of valence-state ENE compared to that of the ground-state ENE. We here show by a new approach that the combination of several fuzzy concepts clarifies the situation and helps in defining the range of validity of rules and principles derived from such concepts.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3