Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Management Science and Operations Research
Reference39 articles.
1. Ghadimi, S., Guanghui Lan, G.H., Hongchao Zhang, H.C.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Math. Program. 155, 267–305 (2016)
2. Kulunchakov, A., Mairal, J.: A generic acceleration framework for stochastic composite optimization. Adv. Neural Inf. Process. Syst. 32, 12556–12567 (2019)
3. Gasnikov, A.V., Nesterov, Y.: Universal method for stochastic composite optimization problems. Comput. Math. Math. Phys. 58, 48–64 (2018)
4. Milzarek, A., Xiao, X.T., Wen, Z.W., Ulbrich, M.: On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization. Sci. China Math. 65, 2151–2170 (2015)
5. Wang, X.Y., Wang, X., Yuan, Y.X.: Stochastic proximal quasi-Newton methods for non-convex composite optimization. Optim. Methods Softw. 34, 922–948 (2019)