Convergence analysis of Picard–SP iteration process for generalized $$\alpha $$–nonexpansive mappings

Author:

Nawaz Bashir,Ullah Kifayat,Gdawiec KrzysztofORCID

Abstract

AbstractIn this manuscript, we introduce a novel hybrid iteration process called the Picard–SP iteration process. We apply this new iteration process to approximate fixed points of generalized $$\alpha $$ α –nonexpansive mappings. Convergence analysis of our newly proposed iteration process is discussed in the setting of uniformly convex Banach spaces and results are correlated with some other existing iteration processes. The dominance of the newly proposed iteration process is exhibited with the help of a new numerical example. In the end, the comparison of polynomiographs generated by other well-known iteration processes with our proposed iteration process has been presented to make a strong impression of our proposed iteration process.

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Abbas, M., Nazir, T.: A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 66(2), 223–234 (2014)

2. Agarwal, R., O’Regan, D., Sahu, D.: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. Journal of Nonlinear and Convex Analysis 8(1), 61–79 (2007)

3. Aoyama, K., Kohsaka, F.: Fixed point theorem for $$\alpha $$-nonexpansive mappings in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications 74(13), 4387–4391 (2011). https://doi.org/10.1016/j.na.2011.03.057

4. Banach, S.: Sur les opérations dans les ensembles abstaits et leur application aux équations intégrales. Fundam. Math. 3(1), 133–181 (1922)

5. Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi contractive operators. Acta Math. Univ. Comenian. 73(1), 119–126 (2004)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polynomiograph Comparison and Stability of a New Iteration Process;International Journal of Analysis and Applications;2024-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3