Alternatives to the EM algorithm for ML estimation of location, scatter matrix, and degree of freedom of the Student t distribution

Author:

Hasannasab MarziehORCID,Hertrich Johannes,Laus Friederike,Steidl Gabriele

Abstract

AbstractIn this paper, we consider maximum likelihood estimations of the degree of freedom parameter ν, the location parameter μ and the scatter matrix Σ of the multivariate Student t distribution. In particular, we are interested in estimating the degree of freedom parameter ν that determines the tails of the corresponding probability density function and was rarely considered in detail in the literature so far. We prove that under certain assumptions a minimizer of the negative log-likelihood function exists, where we have to take special care of the case $\nu \rightarrow \infty $ ν , for which the Student t distribution approaches the Gaussian distribution. As alternatives to the classical EM algorithm we propose three other algorithms which cannot be interpreted as EM algorithm. For fixed ν, the first algorithm is an accelerated EM algorithm known from the literature. However, since we do not fix ν, we cannot apply standard convergence results for the EM algorithm. The other two algorithms differ from this algorithm in the iteration step for ν. We show how the objective function behaves for the different updates of ν and prove for all three algorithms that it decreases in each iteration step. We compare the algorithms as well as some accelerated versions by numerical simulation and apply one of them for estimating the degree of freedom parameter in images corrupted by Student t noise.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning from small data sets: Patch‐based regularizers in inverse problems for image reconstruction;GAMM-Mitteilungen;2024-08-07

2. A Novel Robust Sparse Granger Causality Inference Method and Its Application in MI EEG;2024 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA);2024-06-14

3. On variational inference and maximum likelihood estimation with the $ \lambda $-exponential family;Foundations of Data Science;2024

4. Consistency factor for the MCD estimator at the Student-t distribution;Statistics and Computing;2023-10-12

5. MMF-GSTIW-PMBM Adaptive Filter for Multiple Group Target Tracking With Heavy-Tailed Noise;IEEE Sensors Journal;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3