Author:
Mastronardi Nicola,Van Barel Marc,Vandebril Raf,Van Dooren Paul
Abstract
AbstractIn this paper we analyze the stability of the problem of performing a rational QZ step with a shift that is an eigenvalue of a given regular pencil $$H-\lambda K$$
H
-
λ
K
in unreduced Hessenberg–Hessenberg form. In exact arithmetic, the backward rational QZ step moves the eigenvalue to the top of the pencil, while the rest of the pencil is maintained in Hessenberg–Hessenberg form, which then yields a deflation of the given shift. But in finite-precision the rational QZ step gets “blurred” and precludes the deflation of the given shift at the top of the pencil. In this paper we show that when we first compute the corresponding eigenvector to sufficient accuracy, then the rational QZ step can be constructed using this eigenvector, so that the exact deflation is also obtained in finite-precision.
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Boutry, G., Elad, M., Golub, G., Milanfar, P.: The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach. SIAM Matr. Anal. Appl. 27(2), 582–601 (2005)
2. Camps, D.: Pole swapping methods for the eigenvalue problem, Ph.D. Thesis Dept. Comp. Sc., KULeuven (2019)
3. Camps, D., Meerbergen, K., Vandebril, R.: A rational QZ method. SIAM Matr. Anal. Appl. 40(3), 943–972 (2019)
4. Camps, D., Mastronardi, N., Vandebril, R., Van Dooren, P.: Swapping $$2\times 2$$ blocks in the Schur and generalized Schur form. J. Comput. Appl. Math. 373, 112274 (2020)
5. Ipsen, I.: Computing an eigenvector with inverse iteration. SIAM Rev. 39(2), 254–291 (1997)