Computing Gaussian quadrature rules with high relative accuracy
-
Published:2022-06-02
Issue:1
Volume:92
Page:767-793
-
ISSN:1017-1398
-
Container-title:Numerical Algorithms
-
language:en
-
Short-container-title:Numer Algor
Author:
Laudadio Teresa,Mastronardi Nicola,Van Dooren Paul
Abstract
AbstractThe computation of n-point Gaussian quadrature rules for symmetric weight functions is considered in this paper. It is shown that the nodes and the weights of the Gaussian quadrature rule can be retrieved from the singular value decomposition of a bidiagonal matrix of size n/2. The proposed numerical method allows to compute the nodes with high relative accuracy and a computational complexity of $ \mathcal {O} (n^{2}). $
O
(
n
2
)
.
We also describe an algorithm for computing the weights of a generic Gaussian quadrature rule with high relative accuracy. Numerical examples show the effectiveness of the proposed approach.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics
Reference27 articles.
1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D. u., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999) 2. Bart, H., Gohberg, I., Kaashoek, M., Van Dooren, P.: Factorization of transfer functions. SIAM J. Contr. 18(6), 675–696 (1980) 3. Bickley, W.G., Comrie, L.J., Sadler, D.H., Miller, J.C.P., Thompson, A.J.: British Association for the Advancement of Science Mathematical Tables: Volume 10, Bessel Functions, Part 2. Functions of Positive Integer Order. Cambridge University Press (1952) 4. Bowdler, H., Martin, R.S., Reinsch, C., Wilkinson, J.H.: The QR and QL algorithms for symmetric matrices. Numer. Math. 11, 293–306 (1968) 5. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Comput. 11(5), 873–912 (1990)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|