Cross-points in the Dirichlet-Neumann method I: well-posedness and convergence issues

Author:

Chaudet-Dumas Bastien,Gander Martin J.

Abstract

AbstractCross-points in domain decomposition, i.e., points where more than two subdomains meet, have received substantial attention over the past years, since domain decomposition methods often need special attention in their definition at cross-points, in particular if the transmission conditions of the domain decomposition method contain derivatives, like in the Dirichlet-Neumann method. We study here for the first time the convergence of the Dirichlet-Neumann method at the continuous level in the presence of cross-points. We show that its iterates can be uniquely decomposed into two parts, an even symmetric part that converges geometrically, like when there are no cross-points present, and an odd symmetric part, which generates a singularity at the cross-point and is not convergent. We illustrate our analysis with numerical experiments.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference41 articles.

1. Schwarz, H.A.: Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)

2. Bjørstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23(6), 1093–1120 (1986)

3. Bourgat, J.-F., Glowinski, R., Le Tallec, P., Vidrascu, M., Glowinski, R., Périaux, J., Widlund, O: Variational formulation and algorithm for trace operator in domain decomposition calculations. In: Chan, T. (ed.) Domain decomposition methods, pp 3–16, SIAM (1989)

4. Farhat, C., Roux, F.-X.: A method of Finite Element Tearing and Interconnecting and its parallel solution algorithm. Int. J. Numer. Meth. Engrg. 32, 1205–1227 (1991)

5. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34. Springer (2004)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3