Numerical quadrature for singular integrals on fractals

Author:

Gibbs AndrewORCID,Hewett David,Moiola Andrea

Abstract

AbstractWe present and analyse numerical quadrature rules for evaluating regular and singular integrals on self-similar fractal sets. The integration domain $$\Gamma \subset \mathbb {R}^n$$ Γ R n is assumed to be the compact attractor of an iterated function system of contracting similarities satisfying the open set condition. Integration is with respect to any “invariant” (also known as “balanced” or “self-similar”) measure supported on $$\Gamma$$ Γ , including in particular the Hausdorff measure $$\mathcal {H}^d$$ H d restricted to $$\Gamma$$ Γ , where d is the Hausdorff dimension of $$\Gamma$$ Γ . Both single and double integrals are considered. Our focus is on composite quadrature rules in which integrals over $$\Gamma$$ Γ are decomposed into sums of integrals over suitable partitions of $$\Gamma$$ Γ into self-similar subsets. For certain singular integrands of logarithmic or algebraic type, we show how in the context of such a partitioning the invariance property of the measure can be exploited to express the singular integral exactly in terms of regular integrals. For the evaluation of these regular integrals, we adopt a composite barycentre rule, which for sufficiently regular integrands exhibits second-order convergence with respect to the maximum diameter of the subsets. As an application we show how this approach, combined with a singularity-subtraction technique, can be used to accurately evaluate the singular double integrals that arise in Hausdorff-measure Galerkin boundary element methods for acoustic wave scattering by fractal screens.

Funder

Engineering and Physical Sciences Research Council

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3