A priori error estimates of a Jacobi spectral method for nonlinear systems of fractional boundary value problems and related Volterra-Fredholm integral equations with smooth solutions
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s11075-019-00743-5.pdf
Reference45 articles.
1. Zaky, M.A.: Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J. Comput. Appl. Math. 357, 103–122 (2019)
2. Stynes, M., Gracia, J.L.: A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA J. Numer. Anal. 35(2), 698–721 (2015)
3. Pedas, A., Tamme, E., Vikerpuur, M.: Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems. J. Comput. Appl. Math. 317, 1–16 (2017)
4. Gracia, J.L., Stynes, M.: Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273, 103–115 (2015)
5. Cen, Z., Huang, J., Xu, A.: An efficient numerical method for a two-point boundary value problem with a Caputo fractional derivative. J. Comput. Appl. Math. 336, 1–7 (2018)
Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A shifted Chebyshev operational matrix method for pantograph‐type nonlinear fractional differential equations;Mathematical Methods in the Applied Sciences;2023-09-19
2. Spectral technique with convergence analysis for solving one and two-dimensional mixed Volterra-Fredholm integral equation;PLOS ONE;2023-05-26
3. A re-scaling spectral collocation method for the nonlinear fractional pantograph delay differential equations with non-smooth solutions;Communications in Nonlinear Science and Numerical Simulation;2023-04
4. Numerical Simulation for Generalized Time-Fractional Burgers' Equation With Three Distinct Linearization Schemes;Journal of Computational and Nonlinear Dynamics;2023-03-02
5. Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay;Applied Numerical Mathematics;2023-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3