Optimal strong convergence rates of some Euler-type timestepping schemes for the finite element discretization SPDEs driven by additive fractional Brownian motion and Poisson random measure

Author:

Noupelah Aurelien Junior,Tambue Antoine

Abstract

AbstractIn this paper, we study the numerical approximation of a general second order semilinear stochastic partial differential equation (SPDE) driven by a additive fractional Brownian motion (fBm) with Hurst parameter $H>\frac {1}{2}$ H > 1 2 and Poisson random measure. Such equations are more realistic in modelling real world phenomena. To the best of our knowledge, numerical schemes for such SPDE have been lacked in the scientific literature. The approximation is done with the standard finite element method in space and three Euler-type timestepping methods in time. More precisely the well-known linear implicit method, an exponential integrator and the exponential Rosenbrock scheme are used for time discretization. In contract to the current literature in the field, our linear operator is not necessary self-adjoint and we have achieved optimal strong convergence rates for SPDE driven by fBm and Poisson measure. The results examine how the convergence orders depend on the regularity of the noise and the initial data and reveal that the full discretization attains the optimal convergence rates of order $\mathcal {O}(h^{2}+\varDelta t)$ O ( h 2 + Δ t ) for the exponential integrator and implicit schemes. Numerical experiments are provided to illustrate our theoretical results for the case of SPDE driven by the fBm noise.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference39 articles.

1. Alberverio, S., Gawarecki, L., mandrekar, V., Rüdiger, B., Sarkar, B.: Ito formula for mild solutions of SPDEs with Gaussian and non-Gaussian noise and applications to stability propertieŝ. Random Oper. Stoch. Equ. 25(2), 79–105 (2017)

2. Alós, E., Nualart, D.: Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75, 129–152 (2003)

3. Caraballo, T., Garrido-Atienza, M. J., Taniguchi, T.: The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. 74, 3671–3684 (2011)

4. Cheridito, P.: Arbitrage in fractional Brownian motion models. Finance Stoch. 7, 533–553 (2003)

5. Cont, R., Tankov, P.: Financial modelling with jump process. In: Financial Mathematics Series. CRC Press, Boca Raton (2000)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3