A Lagrange interpolation with preprocessing to nearly eliminate oscillations

Author:

de la Calle Ysern Bernardo,Galán del Sastre Pedro

Abstract

AbstractThis work is concerned with the interpolation of a function $$\varvec{f}$$ f when using a low number of interpolation points, as required by the finite element method for solving PDEs numerically. The function $$\varvec{f}$$ f is assumed to have a jump or a steep derivative, and our goal is to minimize the oscillations produced by the Gibbs phenomenon while preserving the approximation properties for smoother functions. This is achieved by interpolating the transform $$ \varvec{\hat{f} = g \circ f} $$ f ^ = g f using Lagrange polynomials, where $$\varvec{g}$$ g is a rational transformation chosen by minimizing a suitable functional depending on the values of $$\varvec{f}$$ f . The mapping $$\varvec{g}$$ g is monotonic and constructed to possess boundary layers that remove the Gibbs phenomenon. No previous knowledge of the location of the jump is required. The extension to functions of several variables is straightforward, of which we provide several examples. Finally, we show how the interpolation fits the finite element method and compare it with known strategies.

Funder

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3