Cocoercivity, smoothness and bias in variance-reduced stochastic gradient methods

Author:

Morin MartinORCID,Giselsson Pontus

Abstract

AbstractWith the purpose of examining biased updates in variance-reduced stochastic gradient methods, we introduce SVAG, a SAG/SAGA-like method with adjustable bias. SVAG is analyzed in a cocoercive root-finding setting, a setting which yields the same results as in the usual smooth convex optimization setting for the ordinary proximal-gradient method. We show that the same is not true for SVAG when biased updates are used. The step-size requirements for when the operators are gradients are significantly less restrictive compared to when they are not. This highlights the need to not rely solely on cocoercivity when analyzing variance-reduced methods meant for optimization. Our analysis either match or improve on previously known convergence conditions for SAG and SAGA. However, in the biased cases they still do not correspond well with practical experiences and we therefore examine the effect of bias numerically on a set of classification problems. The choice of bias seem to primarily affect the early stages of convergence and in most cases the differences vanish in the later stages of convergence. However, the effect of the bias choice is still significant in a couple of cases.

Funder

Vetenskapsrådet

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3