Abstract
AbstractIn this paper, an accurate method to construct the bidiagonal factorization of Gram (mass) matrices of Bernstein bases of positive and negative degree is obtained and used to compute with high relative accuracy their eigenvalues, singular values and inverses. Numerical examples are included.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Allen, L., Kirby, R.C.: Structured inversion of the Bernstein mass matrix. SIAM J. Matrix Anal. Appl. 41(2), 413–431 (2020)
2. Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)
3. Ahn, Y.J., Lee, B.G., Park, Y., Yoo, J.: Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients. Comput. Aided Geom. Des. 21, 181–191 (2004)
4. Bernstein, S.N.: Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités, Communications de la Société Mathématique de Kharkov 2. Series XIII No. 1, 1–2 (1912)
5. Bhatti, M.I., Bracken, P.: Solutions of differential equations in a Bernstein polynomial basis. J. Comput. Appl. Math 205(1), 272–280 (2012)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献