Abstract
AbstractIn this paper, we consider a class of structured nonconvex nonsmooth optimization problems, in which the objective function is formed by the sum of a possibly nonsmooth nonconvex function and a differentiable function with Lipschitz continuous gradient, subtracted by a weakly convex function. This general framework allows us to tackle problems involving nonconvex loss functions and problems with specific nonconvex constraints, and it has many applications such as signal recovery, compressed sensing, and optimal power flow distribution. We develop a proximal subgradient algorithm with extrapolation for solving these problems with guaranteed subsequential convergence to a stationary point. The convergence of the whole sequence generated by our algorithm is also established under the widely used Kurdyka–Łojasiewicz property. To illustrate the promising numerical performance of the proposed algorithm, we conduct numerical experiments on two important nonconvex models. These include a compressed sensing problem with a nonconvex regularization and an optimal power flow problem with distributed energy resources.
Funder
Royal Melbourne Institute of Technology
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献