Microphysiological Systems as Organ-Specific In Vitro Vascular Models for Disease Modeling

Author:

Nam Ungsig,Lee Seokhun,Ahmad Ashfaq,Yi Hee-gyeong,Jeon Jessie S.ORCID

Abstract

AbstractThe vascular system, essential for human physiology, is vital for transporting nutrients, oxygen, and waste. Since vascular structures are involved in various disease pathogeneses and exhibit different morphologies depending on the organ, researchers have endeavored to develop organ-specific vascular models. While animal models possess sophisticated vascular morphologies, they exhibit significant discrepancies from human tissues due to species differences, which limits their applicability. To overcome the limitations arising from these discrepancies and the oversimplification of 2D dish cultures, microphysiological systems (MPS) have emerged as a promising alternative. These systems more accurately mimic the human microenvironment by incorporating cell interactions, physical stimuli, and extracellular matrix components, thus facilitating enhanced tissue differentiation and functionality. Importantly, MPS often utilize human-derived cells, greatly reducing disparities between model and patient responses. This review focuses on recent advancements in MPS, particularly in modeling the human organ-specific vascular system, and discusses their potential in biological adaptation.

Funder

National research foundation of Korea

National resarch foundation of Korea

Korea Advanced Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3