Shear Strength and Consolidation Behaviour of Kaolin Clay Reinforced with a Granular Column Backfilled with Crushed Waste Glass

Author:

Kazmi DanishORCID,Serati MehdiORCID,Williams David J.ORCID,Olaya Sebastian QuinteroORCID,Qasim Sadaf,Cheng Yi PikORCID,Grizi Athina,Javadi Akbar A.

Abstract

Abstract Granular columns are commonly used for ground improvement. However, minimal research is presently available on the effect of backfill particle size on the geotechnical performance of granular column-reinforced soil. Geo-environmentally, using crushed waste glass (CWG) as a sustainable replacement for depleting traditional construction sands could offer a cleaner feedstock to backfill granular columns while helping recycle growing stockpiles of waste glass, potentially supporting the circular economy transition and decarbonisation of the construction industry. Given these multi-pronged motivations, this study investigated the shear strength and consolidation behaviour of kaolin reinforced with a CWG granular column. Three different particle size ranges (PSR) of CWG were discretely used to install a granular column in the kaolin bed, including fine (0.50–1.0 mm), medium (1.0–1.7 mm) and coarse (1.7–3.35 mm) particles with median particle sizes of 0.78 mm, 1.42 mm and 2.30 mm, respectively. The geocomposite containing a medium CWG column showed the highest increase in friction angle, increasing from 14.0° for kaolin only specimens to 20.7° for the geocomposites. Similarly, the consolidation behaviour of reinforced kaolin (geocomposites) was typically superior to that of kaolin only specimens. Notably, installing a coarse, medium or fine CWG column decreased the average compression index (Cc) of the geocomposites by almost 17%, 35% or 50%, respectively, compared to that of the kaolin only specimens. Given the promising results of this initial study, some suggestions are provided for future studies on assessing the application of CWG as an alternative backfill and sustainable geomaterial in granular column construction. Video abstract This internationally-partnered Video Abstract highlights the findings of the research study, indicating that crushed waste glass (CWG) could potentially serve as a sustainable geomaterial and be used as a replacement for traditional construction sand to backfill granular columns in clayey soils for ground improvement, helping reduce the unsustainable exploitation of sand resources and increasing waste glass recycling, potentially supporting the paradigm shift to a circular economy and contributing to decarbonisation of the construction industry.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

Reference79 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3