Numerical Analysis of Geosynthetic-Reinforced and Pile-Supported Embankments Considering Integrated Soil-Structure Interactions

Author:

Pham Tuan A.ORCID,Tran Quoc-AnhORCID,Villard PascalORCID,Dias DanielORCID

Abstract

AbstractGeosynthetic-reinforced and pile-supported (GRPS) embankments are becoming more popular as a solution for addressing soil structural instability. The interaction between the geosynthetic-pile-subsoil-embankment elements is crucial to the load transfer mechanism and performance of GRPS embankments. Several analytical models for GRPS embankment design have been proposed, but their performance and applicability still require further validation. This research presents a three-dimensional numerical investigation of the load transfer mechanism of GRPS embankments using the finite difference approach, considering the combined interaction between the soil embankment, geosynthetics, pile, and subsoil. The importance of these crucial aspects in the GRPS embankment design technique is highlighted, as well as their influence and sensitivity. The following elements, in descending order, influence the load and settlement efficacies of the GRPS embankments: soft soil stiffness, embankment height, geosynthetic stiffness, and embankment soil density, according to this research. Furthermore, the use of geosynthetics reduces differential settlements and mitigates soil yielding above the pile heads. The numerical findings are then compared to four well-known design standards, with the subsurface stiffness, geosynthetic stiffness, embankment height, and fill soil density all being varied simultaneously to measure their performance. The findings of the comparison revealed that these techniques differ greatly in their ability to forecast load efficacy and differential settlement. Depending on the geometric properties of the embankment and material properties, all of the selected design methods produce over-predictions or under-predictions.

Publisher

Springer Science and Business Media LLC

Subject

Geology,Soil Science,Geotechnical Engineering and Engineering Geology,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3