Rotation of the Stress Tensor in a Westerly Granite Sample During the Triaxial Compression Test

Author:

Cielesta SzymonORCID,Orlecka-Sikora Beata,Idris Musa Adebayo

Abstract

AbstractWe simulated the spatiotemporal modelling of 3D stress and strain distributions during the triaxial compression laboratory test on a westerly granite sample using finite-difference numerical modelling implemented with FLAC3D software. The modelling was performed using a ubiquitous joint constitutive law with strain softening. The applied procedure is capable of reproducing the macroscopic stress and strain evolution in the sample during triaxial deformation until a failure process occurs. In addition, we calculated focal mechanisms of acoustic emission (AE) events and resolved local stress field orientations. This detailed stress information was compared with that from numerical modelling. The comparison was made based on the 3D rotation angle between the cardinal axes of the two stress tensors. To infer the differences in rotation, we applied ANOVA. We identified the two time levels as the plastic deformation phase and the after-failure phase. Additionally, we introduced the bin factor, which describes the location of the rotation scores in the rock sample. The p values of the test statistics F for the bin and phase effects are statistically significant. However, the interaction between them is insignificant. We can, therefore, conclude that there was a significant difference in the time between the rotation means in the particular bins, and we ran post hoc tests to obtain more information where the differences between the groups lie. The largest rotation of the stress field provided by the focal mechanisms of AE events from the numerically calculated stress field is observed in the edge bins, which do not frame the damage zone of the sample.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Geology,Soil Science,Geotechnical Engineering and Engineering Geology,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3