Estimation of Bearing Capacity of Piles in Cohesionless Soil Using Optimised Machine Learning Approaches
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geology,Soil Science,Geotechnical Engineering and Engineering Geology,Architecture
Link
http://link.springer.com/content/pdf/10.1007/s10706-019-01085-8.pdf
Reference55 articles.
1. Abu-Farsakh MY, Titi HH (2004) Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles. J Geotech Geoenviron Eng 130(9):935–944
2. Alkroosh I, Nikraz H (2011) Correlation of pile axial capacity and CPT data using gene expression programming. Geotech Geol Eng 29(5):725–748
3. Alkroosh I, Nikraz H (2014) Predicting pile dynamic capacity via application of an evolutionary algorithm. Soils Found 54(2):233–242
4. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185
5. Armaghani DJ, Raja RSNSB, Faizi K, Rashid ASA (2017) Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput Appl 28(2):391–405
Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Digitalization of Analysis of a Concrete Block Layer Using Machine Learning as a Sustainable Approach;Sustainability;2024-09-02
2. Predicting the Compression Capacity of Screw Piles in Sand Using Machine Learning Trained on Finite Element Analysis;Geotechnics;2024-08-21
3. Indirect estimation of resilient modulus (Mr) of subgrade soil: Gene expression programming vs multi expression programming;Structures;2024-08
4. Forecasting Pile Bearing Capacity Using an Innovative RES-Based Approach;Indian Geotechnical Journal;2024-07-27
5. Temperature-Dependent Post-Cyclic Mechanical Characteristics of Interfaces between Geogrid and Marine Reef Sand: Experimental Research and Machine Learning Modeling;Journal of Marine Science and Engineering;2024-07-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3