The Buoyancy of the Tunnel Segmental Lining in the Surrounding Filling Material and its Effects on the Concrete Stress State

Author:

Han Xin,Oreste PierpaoloORCID,Ye Fei

Abstract

AbstractSegmental lining is subject to significant upward buoyancy forces when a grouting material (slurry), initially fluid, is adopted to fill the gap between its external profile and the wall of a tunnel excavated with a TBM machine. The analysis of the effects of these forces is important in order to correctly dimension the segmental lining and avoid damage to the lining and subsequent costly maintenance and restoration actions. Given the complexity of the behavior of a segmental lining consisting of segmental rings and circular joints that alternate in the longitudinal direction of the tunnel, a specific numerical model has been implemented, adopting the Finite Element Method (FEM). This model is able to obtain the development of the vertical displacements of the segmental lining starting from the TBM tail, together with the bending moments and the shear forces induced inside it. The developed model is able to assess the risks of breaking and damaging the concrete and steel bolts that are used to connect the segmental rings at the circular joints; therefore, it represents a useful design tool for being able to correctly dimension the segmental lining also in relation to the risks produced by the appearance of considerable buoyancy forces around it, due to the presence of the initially fluid filling material. The proposed numerical model was applied to a real case (Ningbo metro tunnel) and allowed to obtain satisfactory results from the comparison of the calculated displacements with in situ measurements. Some sensitivity analyzes developed on the studied case have made it possible to detect which are the influencing parameters that have the greatest impact on the behavior of segmental lining in the presence of the studied buoyancy forces.

Funder

National Natural Science Foundation of China

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Geology,Soil Science,Geotechnical Engineering and Engineering Geology,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3