Estimation of Uncertainties in Soil Using MCMC Simulation and Effect of Model Uncertainty

Author:

Rana HimanshuORCID,Pandit Bhardwaj,Sivakumar Babu G. L.

Abstract

AbstractThe simulation of field conditions for seismically induced slope failures incorporates model uncertainties, which account for the difference between simulated and observed slope behaviour. The quantification of this uncertainty is mandatory to understand the field response of the geotechnical system and make decisions for geotechnical systems. Previous studies have partially studied uncertainty for slope systems under seismic loading. To this aim, this study proposes a methodology based on probabilistic back analysis to estimate uncertainties in soil parameters considering the observed slope response under seismic loading. The proposed method involves support vector regression (SVR) model to map the relationship between soil parameters and seismically induced slope displacement. The SVR model is generated using the data from the numerical simulation of slope system under seismic loading using FLAC 2D. Further, the developed SVR model is used for probabilistic back analysis using Markov Chain Monte Carlo (MCMC) simulation. The Noto Hanto earthquake in 2007 and the subsequent slope failure along Noto Yuryo Road, Japan, are considered as a case study to validate the proposed methodology. The results of the case study show that the updated or inferred soil parameters have less variability than the prior distribution. Further, the uncertainties in the slope system influence the inferred soil parameters. Hence, a parametric study is conducted to investigate the effect of model uncertainty on the posterior statistics of soil parameters. The study results facilitate a better understanding of the slope deformation mechanism and the effect of model uncertainty on the updated statistics of soil parameters.

Publisher

Springer Science and Business Media LLC

Subject

Geology,Soil Science,Geotechnical Engineering and Engineering Geology,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3