Heuristic techniques for maximum likelihood localization of radioactive sources via a sensor network

Author:

Abdelhakim AssemORCID

Abstract

AbstractMaximum likelihood estimation (MLE) is an effective method for localizing radioactive sources in a given area. However, it requires an exhaustive search for parameter estimation, which is time-consuming. In this study, heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors. Hence, the time consumption of MLE would be effectively reduced. First, the radiation source was detected using the k-sigma method. Subsequently, the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source. A comparative study was performed in which the estimation accuracy and time consumption of the MLE were evaluated for traditional methods and heuristic techniques. The traditional MLE was performed via a grid search method using fixed and multiple resolutions. Additionally, four commonly used heuristic algorithms were applied: the firefly algorithm (FFA), particle swarm optimization (PSO), ant colony optimization (ACO), and artificial bee colony (ABC). The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program. The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE. The time consumption for the heuristic-based MLE was 0.75, 0.03, 0.02, and 0.059 s for FFA, PSO, ACO, and ABC, respectively. The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE. Hence, heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE.

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3