Development of a wide-range and fast-response digitizing pulse signal acquisition and processing system for neutron flux monitoring on EAST

Author:

Yang Li,Cao Hong-RuiORCID,Zhao Jin-Long,Zhang Zi-Han,Li Qiang,Wu Guo-Bin,Zhang Yong-Qiang,Zhong Guo-Qiang,Hu Li-Qun,Zhang Zi-Jun

Abstract

AbstractThe neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak (EAST). The measurement result of neutron flux monitoring (NFM) is a significant feedback parameter related to the acquisition of radiation protection-related information and rapid fluctuations in neutron emission induced by plasma magnetohydrodynamic activity. Therefore, a wide range and high time resolution are required for the NFM system on EAST. To satisfy these requirements, a digital pulse signal acquisition and processing system with a wide dynamic range and fast response time was developed. The present study was conducted using a field-programmable gate array (FPGA) and peripheral component interconnect extension for instrument express (PXIe) platform. The digital dual measurement modes, which are composed of the pulse-counting mode and AC coupled square integral’s Campbelling mode, were designed to expand the measurement range of the signal acquisition and processing system. The time resolution of the signal acquisition and processing system was improved from 10 to 1 ms owing to utilizing high-speed analog-to-digital converters (ADCs), a high-speed PXIe communication with a direct memory access (DMA) mode, and online data preprocessing technology of FPGA. The signal acquisition and processing system was tested experimentally in the EAST radiation field. The test results showed that the time resolution of NFM was improved to 1 ms, and the dynamic range of the neutron counts rate was expanded to more than $$10^{6}$$ 10 6 counts per second. The Campbelling mode was calibrated using a multipoint average linear fitting method; subsequently, the fitting coefficient reached 0.9911. Therefore, the newly developed pulse signal acquisition and processing system ensures that the NFM system meets the requirements of high-parameter experiments conducted on EAST more effectively.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3